The Cube Root Calculator helps you quickly find the cube root of any positive or negative number. It’s a handy tool for students, teachers, and anyone dealing with algebra or higher-level math.

What is a Cube Root?
The cube root of a number is a value that, when multiplied by itself three times, gives the original number.
For example:
- The cube root of $8$ is $2$ because $2 \times 2 \times 2 = 8$
- The cube root of $-27$ is $-3$ because $(-3) \times (-3) \times (-3) = -27$
In general:
- If $x^3 = y$, then $x = \sqrt[3]{y}$
Cube Root Formula
The standard formula for cube root is:
$ \sqrt[3]{x} $
Where:
- $x$ is the number
- $\sqrt[3]{x}$ is the cube root of $x$
Examples of Cube Roots
- $ \sqrt[3]{125} = 5 $ because $5 \times 5 \times 5 = 125$
- $ \sqrt[3]{64} = 4 $ because $4 \times 4 \times 4 = 64$
- $ \sqrt[3]{-8} = -2 $ because $(-2) \times (-2) \times (-2) = -8$
Properties of Cube Roots
- The cube root of a positive number is positive.
- The cube root of a negative number is negative.
- Every real number has exactly one real cube root.
Why Use a Cube Root Calculator?
- Quickly solve algebraic equations.
- Check homework answers.
- Save time on complex calculations.
- Learn and understand the relationship between numbers and their cube roots.
✅ With this calculator, you can input any number (positive or negative) and instantly get the cube root value.
Learn Quadratic Equation
Cube Roots from 1 to 30
Number | Cube Root |
---|---|
1 | $ \sqrt[3]{1} = 1 $ |
2 | $ \sqrt[3]{2} \approx 1.26 $ |
3 | $ \sqrt[3]{3} \approx 1.44 $ |
4 | $ \sqrt[3]{4} \approx 1.59 $ |
5 | $ \sqrt[3]{5} \approx 1.71 $ |
6 | $ \sqrt[3]{6} \approx 1.82 $ |
7 | $ \sqrt[3]{7} \approx 1.91 $ |
8 | $ \sqrt[3]{8} = 2 $ |
9 | $ \sqrt[3]{9} \approx 2.08 $ |
10 | $ \sqrt[3]{10} \approx 2.15 $ |
11 | $ \sqrt[3]{11} \approx 2.22 $ |
12 | $ \sqrt[3]{12} \approx 2.29 $ |
13 | $ \sqrt[3]{13} \approx 2.35 $ |
14 | $ \sqrt[3]{14} \approx 2.41 $ |
15 | $ \sqrt[3]{15} \approx 2.46 $ |
16 | $ \sqrt[3]{16} \approx 2.52 $ |
17 | $ \sqrt[3]{17} \approx 2.57 $ |
18 | $ \sqrt[3]{18} \approx 2.62 $ |
19 | $ \sqrt[3]{19} \approx 2.67 $ |
20 | $ \sqrt[3]{20} \approx 2.71 $ |
21 | $ \sqrt[3]{21} \approx 2.76 $ |
22 | $ \sqrt[3]{22} \approx 2.80 $ |
23 | $ \sqrt[3]{23} \approx 2.84 $ |
24 | $ \sqrt[3]{24} \approx 2.88 $ |
25 | $ \sqrt[3]{25} \approx 2.92 $ |
26 | $ \sqrt[3]{26} \approx 2.96 $ |
27 | $ \sqrt[3]{27} = 3 $ |
28 | $ \sqrt[3]{28} \approx 3.04 $ |
29 | $ \sqrt[3]{29} \approx 3.07 $ |
30 | $ \sqrt[3]{30} \approx 3.11 $ |